
Starting Out with C++: Early Objects 5/e © 2006 Pearson Education.

 All Rights Reserved

Starting Out with C++: Early Objects

5th Edition

Chapter 12

More About Characters, Strings,
and the string Class

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 2

© 2006 Pearson Education.

 All Rights Reserved

Topics

12.1 C-Strings

12.2 Library Functions for Working with
 C-Strings

12.3 String/Numeric Conversion Functions

12.4 Character Testing

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 3

© 2006 Pearson Education.

 All Rights Reserved

Topics (continued)

12.5 Character Case Conversion

12.6 Writing Your Own C-String Handling
 Functions

12.7 More About the C++ string Class

12.8 Creating Your Own String Class

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 4

© 2006 Pearson Education.

 All Rights Reserved

12.1 C-Strings

• C-string: sequence of characters stored
in adjacent memory locations and
terminated by NULL character

• The C-string

 "Hi there!"

 would be stored in memory as shown:

H i t h e r e ! \0

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 5

© 2006 Pearson Education.

 All Rights Reserved

Representation of C-strings

• As a string literal

 "Hi There!"

• As a pointer to char

 char *p;

• As an array of characters

 char str[20];

• All three representations are pointers to
char

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 6

© 2006 Pearson Education.

 All Rights Reserved

String Literals

• A string literal is stored as a null-
terminated array of char

• Compiler uses the address of the array

as the value of the string

• String literal is a pointer to char

 h i \0

value of “hi” is address

of this array

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 7

© 2006 Pearson Education.

 All Rights Reserved

Array of char

• Array of char can be defined and

initialized to a C-string

 char str1[20] = "hi";

• Array of char can be defined and later

have a string copied into it

 char str2[20];

 strcpy(str2, "hi");

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 8

© 2006 Pearson Education.

 All Rights Reserved

Array of char

• Name of array of char is used as a

pointer to char

• Unlike string literal, a C-string defined

as an array can be referred to in other

parts of the program by using the array

name

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 9

© 2006 Pearson Education.

 All Rights Reserved

Pointer to char

• Defined as

 char *pStr;

• Does not itself allocate memory

• Useful in repeatedly referring to C-
strings defined as a string literal

 pStr = "Hi there";

 cout << pStr << " "

 << pStr;

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 10

© 2006 Pearson Education.

 All Rights Reserved

Pointer to char

• Pointer to char can also refer to C-

strings defined as arrays of char

 char str[20] = "hi";

 char *pStr = str;

 cout << pStr; // prints hi

• Make sure the pointer points to

legitimate memory before using!

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 11

© 2006 Pearson Education.

 All Rights Reserved

12.2 Library Functions for

Working with C-Strings

• Require cstring header file

• Functions take one or more C-strings as

arguments. Argument can be:

– Name of an array of char

– pointer to char

– literal string

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 12

© 2006 Pearson Education.

 All Rights Reserved

Library Functions for

Working with C-Strings

• int strlen(char *str)

 Returns length of a C-string:

 cout << strlen("hello");

 Prints 5

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 13

© 2006 Pearson Education.

 All Rights Reserved

strcpy

• strcpy(char *dest, char *source)

 Copies a string from a source address to a

destination address

 char name[15];

 strcpy(name, "Deborah");

 cout << name; // prints Deborah

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 14

© 2006 Pearson Education.

 All Rights Reserved

strcmp

• int strcmp(char *str1, char*str2)

 Compares strings stored at two addresses to

determine their relative alphabetic order:

 Returns a value:

 less than 0 if str1 precedes str2

 equal to 0 if str1 equals str2

 greater than 0 if str1 succeeds str2

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 15

© 2006 Pearson Education.

 All Rights Reserved

strcmp

• Often used to test for equality

 if(strcmp(str1, str2) == 0)

 cout << "equal";

 else

 cout << "not equal";

• Also used to determine ordering of C-strings in

sorting applications

• Note that C-strings cannot be compared using ==

(compares addresses of C-strings, not contents)

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 16

© 2006 Pearson Education.

 All Rights Reserved

strstr

• char *strstr(char *str1,char *str2)

 Searches for the occurrence of str2 within
 str1.

 Returns a pointer to the occurrence of str2
 within str1 if found, and returns NULL otherwise

 char s[15] = "Abracadabra";
 char *found = strstr(s,"dab");
 cout << found; // prints dabra

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 17

© 2006 Pearson Education.

 All Rights Reserved

12.3 String/Numeric

Conversion Functions

• These functions convert between

string and numeric forms of numbers

• Need to include the cstdlib header

file

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 18

© 2006 Pearson Education.

 All Rights Reserved

atoi and atol

• atoi converts alphanumeric to int

• atol converts alphanumeric to long

• int atoi(char *numericStr)

 long atol(char *numericStr)

• Examples:

 int number; long lnumber;

 number = atoi("57");

 lnumber = atol("50000");

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 19

© 2006 Pearson Education.

 All Rights Reserved

atof

• atof converts a numeric string to a

floating point number, actually a double

• double atof(char *numericStr)

• Example:

 double dnumber;

 dnumber = atof("3.14159");

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 20

© 2006 Pearson Education.

 All Rights Reserved

atoi, atol, atof

• if C-string being converted contains
non-digits, results are undefined

– function may return result of conversion up
to first non-digit

– function may return 0

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 21

© 2006 Pearson Education.

 All Rights Reserved

itoa

• itoa converts an int to an alphanumeric string

• Allows user to specify the base of conversion

 itoa(int num, char *numStr, int base)

• num : number to convert

• numStr: array to hold resulting string

• base: base of conversion

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 22

© 2006 Pearson Education.

 All Rights Reserved

itoa

 itoa(int num, char *numStr, int base)

• Example: To convert the number 1200 to a
hexadecimal string

 char numStr[10];

 itoa(1200, numStr, 16);

• The function performs no bounds-checking on the
array numStr

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 23

© 2006 Pearson Education.

 All Rights Reserved

12.4 Character Testing

• require cctype header file

FUNCTION MEANING

isalpha true if arg. is a letter, false otherwise

isalnum true if arg. is a letter or digit, false
otherwise

isdigit true if arg. is a digit 0-9, false otherwise

islower true if arg. is lowercase letter, false

otherwise

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 24

© 2006 Pearson Education.

 All Rights Reserved

 Character Testing

• require cctype header file

FUNCTION MEANING

isprint true if arg. is a printable character, false

otherwise

ispunct true if arg. is a punctuation character,
false otherwise

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 25

© 2006 Pearson Education.

 All Rights Reserved

 Character Testing

• require cctype header file

FUNCTION MEANING

isupper true if arg. is an uppercase letter, false

otherwise

isspace true if arg. is a whitespace character, false

otherwise

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 26

© 2006 Pearson Education.

 All Rights Reserved

12.5 Character Case Conversion

• require cctype header file

• Functions:

– toupper: convert a letter to uppercase

equivalent

– tolower: convert a letter to lowercase

equivalent

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 27

© 2006 Pearson Education.

 All Rights Reserved

toupper

 toupper: if char argument is lowercase

letter, return uppercase equivalent;

otherwise, return input unchanged

 toupper actually takes an integer

parameter and returns an integer result.

The integers are the ascii codes of the

characters

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 28

© 2006 Pearson Education.

 All Rights Reserved

toupper

The function
 char upCase(int i)

 {return toupper(i);}

 will work as follows:

char greeting[] = "Hello!";

cout << upCase[0]; //displays 'H'

cout << upCase[1]; //displays 'E'

cout << upCase[5]; //displays '!'

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 29

© 2006 Pearson Education.

 All Rights Reserved

tolower

 tolower: if char argument is uppercase

letter, return lowercase equivalent; otherwise,

return input unchanged

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 30

© 2006 Pearson Education.

 All Rights Reserved

tolower

The function
 char loCase(int i)

 {return tolower(i);}

 will work as follows
char greeting[] = "Hello!";

cout << loCase[0]; //displays 'h'

cout << loCase[1]; //displays 'e'

cout << loCase[5]; //displays '!'

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 31

© 2006 Pearson Education.

 All Rights Reserved

12.6 Writing Your Own C-String

Handling Functions

• When writing C-String Handling

Functions:

– can pass arrays or pointers to char

– Can perform bounds checking to ensure

enough space for results

– Can anticipate unexpected user input

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 32

© 2006 Pearson Education.

 All Rights Reserved

12.7 More About the C++
string Class

• The string class offers several

advantages over C-style strings:

– large body of member functions

– overloaded operators to simplify

expressions

• Need to include the string header file

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 33

© 2006 Pearson Education.

 All Rights Reserved

string class constructors

• Default constructor string()

• Copy constructor string(string&)
initializes string objects with values of
other string objects

• Convert constructor string(char *)
allows C-strings to be used wherever
string class objects are expected

• Various other constructors

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 34

© 2006 Pearson Education.

 All Rights Reserved

Overloaded string Operators

OPERATOR MEANING

>> reads whitespace-delimited strings
into string object

<< outputs string object to a stream

= assigns string on right to string
object on left

+= appends string on right to end of
contents of string on left

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 35

© 2006 Pearson Education.

 All Rights Reserved

Overloaded string Operators

(continued)

OPERATOR MEANING

+ concatenates two strings

[] references character in string using
array notation

>, >=,

<, <=,

==, !=

relational operators for string
comparison. Return true or false

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 36

© 2006 Pearson Education.

 All Rights Reserved

Overloaded string Operators

string word1, phrase;

string word2 = " Dog";

cin >> word1; // user enters "Hot"

 // word1 has "Hot"

phrase = word1 + word2; // phrase has

 // "Hot Dog"

phrase += " on a bun";

for (int i = 0; i < 16; i++)

 cout << phrase[i]; // displays

 // "Hot Dog on a bun"

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 37

© 2006 Pearson Education.

 All Rights Reserved

string Member Functions

Categories:
– conversion to C-strings: c_str, data

– modification: append, assign, clear,
copy, erase, insert, replace, swap

– space management: capacity, empty,
length, resize, size

– substrings: find, substr

– comparison: compare

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 38

© 2006 Pearson Education.

 All Rights Reserved

Conversion to C-strings

• data() and c_str() both return the

C-string equivalent of a string object

• Useful in using a string object with a

function that is expecting a C-string

 char greeting[20] = "Have a ";

 string str("nice day");

 strcat(greeting, str.data());

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 39

© 2006 Pearson Education.

 All Rights Reserved

Modification of string objects

• str.append(string s)

 appends contents of s to end of str

• Convert constructor for string allows

a C-string to be passed in place of s

 string str("Have a ");

 str.append("nice day");

• append is overloaded for flexibility

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 40

© 2006 Pearson Education.

 All Rights Reserved

Modification of string objects

• str.insert(int pos, string s)

 inserts s at position pos in str

• Convert constructor for string allows

a C-string to be passed in place of s

 string str("Have a day");

 str.insert(7, "nice ");

• insert is overloaded for flexibility

Chapter 12 Starting Out with C++: Early Objects 5/e

slide 41

© 2006 Pearson Education.

 All Rights Reserved

12.8 Creating Your Own

String Class
• A good way to put OOP skills into

practice

• The class allocates dynamic memory,
so has copy constructor, destructor, and
overloaded assignment

• Overloads the stream insertion and
extraction operators, and many other
operators

Starting Out with C++: Early Objects 5/e © 2006 Pearson Education.

 All Rights Reserved

Starting Out with C++: Early Objects

5th Edition

Chapter 12

More About Characters, Strings,
and the string Class

